
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2024/2025

Implementation of Tree Concept in Digital Image

Processing with Quadtree Decomposition

Jethro Jens Norbert Simatupang - 135230811

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523081@std.stei.itb.ac.id, 2jethrojsimatupang@gmail.com

Abstract—Quadtree decomposition is a tree-structure based

technique that improves the efficiency of digital image processing

by dividing an image into hierarchical sub-regions based on pixel

homogeneity. This research paper examines the implementation of

the quadtree decomposition algorithm, including the recursive

decomposition process, data storage in the tree structure, and the

efficiency of the algorithm in image processing. The result proves

that the quadtree decomposition is effective for processing images

containing large homogeneous regions, making it a valuable

method for specific image processing applications.

Keywords—Digital Image Processing, Image Processing

Efficiency, Quadtree Decomposition, Recursive Algorithm

I. INTRODUCTION

Digital image processing is a branch of computer science that

focuses on the analysis, manipulation, and interpretation of

visual data in the form of digital images. With the rapid

advancement of digital technology, digital image processing has

become highly relevant and important in various fields, such as

healthcare diagnostics and industrial automation to surveillance

systems, autonomous transportation, and even entertainment.

The techniques used in digital image processing continue to

evolve to meet the demands for more efficient and effective

visual data processing.

Digital images, as complex visual representations, contain

information that can be processed for various purposes. The

field of digital image processing encompasses a wide range of

techniques and methodologies aimed at extracting meaningful

information from images or transforming them to meet specific

objectives. This process typically involves multiple stages,

including image enhancement for improved visual quality,

segmentation to isolate regions of interest, and pattern analysis

for object recognition. Each stage contributes to simplifying and

optimizing image data, allowing for more effective processing

and decision-making.

Given the increasing complexity of visual data and the

demand for more precise results, researchers have continually

developed innovative approaches to address various challenges

in digital image processing. These challenges include noise

reduction, sharpness enhancement, compression, and so on. One

technique that can be utilized in improving image processing

efficiency is quadtree decomposition, which allows an image to

be divided into several homogeneous blocks. Image

decomposition using the quadtree concept simplifies and

facilitates further analysis of the image since the image

processing is not evenly distributed but rather adjusted to the

homogeneity of the image.

By organizing image data into a tree structure, quadtree

decomposition facilitates efficient storage, processing, and

analysis, particularly for large or high-resolution images. This

method is widely applicable in tasks such as image

segmentation, compression, and spatial analysis. This research

paper explores the implementation of the quadtree

decomposition technique in digital image processing. It delves

into the theoretical foundation of the quadtree approach, its

practical applications, and its benefits in addressing

contemporary image processing challenges. Through this

research, the author aims to highlight the potential of tree-based

methods in advancing the efficiency and effectiveness of digital

image processing.

II. THEORITICAL BASIS

A. Graph

A graph is a structure that represents discrete objects

(vertices) and the relationships between those objects (edges).

Graph G is defined as G = (V, E), where V is a non-empty set of

vertices, and E is a set of edges connecting pairs of vertices.

Based on the presence of loops or multiple edges, graphs are

categorized into two types:

1. Simple graph

A simple graph is a graph that contains no loops or

multiple edges

Figure 1. Simple graph illustration

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

2. Non-simple graph

A non-simple graph contains either multiple edges or

loops. Non-simple graphs are further classified into:

• Multi-Graph: A graph containing multiple

edges.

Figure 2. Multi-graph illustration

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matd

is/2024-2025/20-Graf-Bagian1-2024.pdf

mailto:113523081@std.stei.itb.ac.id
mailto:2jethrojsimatupang@gmail.com
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2024/2025

• Pseudo-Graph: A graph containing loops.

Figure 2. Pseudo-graph illustration

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matd

is/2024-2025/20-Graf-Bagian1-2024.pdf

Based on edge orientation, graphs are divided into two types:

1. Undirected graph

An undirected graph is a graph where the edges do not

have a specific direction.

Figure 3. Undirected-graph illustration

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

2. Directed graph

A directed graph is a graph where each edge has a

specific orientation or direction.

Figure 4. Directed-graph illustration

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

There are some graph terminologies that are important in this

paper:

1. Adjacent

Two vertices are said to be adjacent if they are directly

connected by an edge.

2. Incident

For any edge e = (vj, vk), e is said to be incident to vertex

vj or vertex vk.

3. Degree

The degree of a vertex is the number of edges incident to

that vertex.

4. Path

A path in a graph is a sequence of vertices connected by

edges, traversing from one vertex to another.

Figure 5. 0, 6, 3, 7, 9, 10 path is the path from vertex 0 to 10

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

5. Cycle or Circuit

A cycle (or circuit) is a path that starts and ends at the

same vertex.

Figure 6. 0, 4, 8, 5, 1, 0 path is a circuit

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

6. Connected

Two vertices v1 and v2 are said to be connected if there is

a path from v1 to v2.

7. Connected graph

A connected graph is a type of graph in which every

vertex can be reached from any other vertex through one

or more paths.

B. Tree

A tree is an undirected graph that is connected and does not

contain any circuits (cycles). A tree where one of its vertices is

treated as the root and its edges are directed to form a directed

graph is called a rooted tree.

Figure 7. (a) Rooted tree, (b) as an agreement, the arrows on the

edges can be discarded

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/24-Pohon-Bag2-2024.pdf

There are some important rooted tree terminologies in this

paper:

1. Child

A child is a vertex directly connected to another vertex

as a result of an outgoing branch from that vertex.

2. Parent

A parent is a vertex directly connected to another

vertex through a branch leading to the latter.

3. Siblings

Siblings are vertices that share the same parent.

4. Subtree

A subtree is a part of the tree consisting of a specific

vertex and all its descendants (children, grandchildren,

etc.).

5. Leaf

A leaf is a vertex in the tree that has no children.

6. Internal Node

An internal node is any vertex that is not a leaf; it has

at least one child.

7. Level

The level of a vertex is its position or depth in the tree,

calculated from the root. The root is at level 0, and each

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2024/2025

subsequent level increases by one.

8. Height or Depth

The height (or depth) of a tree is the number of levels

from the root to the deepest leaf.

A rooted tree where each branch vertex has at most n children

is called an n-ary tree. An n-ary tree is said to be regular or full

if every vertex, except those at the leaf level, has exactly n

children.

Figure 8. Full 3-ary tree illustration

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/24-Pohon-Bag2-2024.pdf

C. Digital Image Processing

Digital image processing is a branch of computer science

focused on analyzing, manipulating, and interpreting visual data

in the form of digital images. A digital image, as a complex

visual representation, contains information that can be

processed for various purposes. It is represented as an M × N

matrix, where M × N represents the image resolution and each

matrix element represents a pixel.

Digital image processing involves multiple stages, from

image enhancement, object segmentation, to pattern analysis

and recognition. Over time, various image processing

techniques have been developed to address challenges such as

noise reduction, sharpness enhancement, compression, and so

on. Digital image processing has wide applications in various

fields, such as remote sensing, pattern recognition, security,

robotics, and the creative industries.

Each pixel in a digital image represents the intensity of light

at a specific point, which can be in grayscale (gray levels) for

grayscale images or a combination of colors in color models

such as RGB for colored images. Additionally, pixel intensity is

often represented within a specific range of values, such as 0 to

255 for 8-bit images, indicating the level of brightness or color.

Figure 9. Image noise reduction illustration

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2019-

2020/01-Pengantar-Pengolahan-Citra-Bag1.pdf

D. Quadtree Decomposition

Quadtree decomposition is one of the techniques in image

processing that involves dividing an image into blocks that are

more homogeneous compared to the image as a whole. At the

highest level, if the image is not homogeneous, it is divided into

four large blocks. If a block does not meet the homogeneity

criteria, it is further subdivided into four smaller blocks. This

process continues until each block satisfies the homogeneity

criteria or the block size reaches the minimum limit. Image

decomposition using the quadtree concept simplifies and

facilitates further image analysis since the image processing is

not evenly distributed but rather adjusted to the homogeneity of

the image.

Figure 10. Quadtree decomposition illustration

Source: https://www.mathworks.com/help/images/quadtree-

decomposition.html

The quadtree decomposition technique implements the

concepts of trees and recursion at a more advanced level.

Fundamentally, a quadtree is a full 4-ary tree. The tree data

structure is used to divide a two-dimensional space into four

sections or quadrants. Each node in the tree represents a smaller

area within the two-dimensional space, based on the principle of

dividing the space into four parts until homogeneity is achieved.

Figure 11. (a) Image, (b) block decomposition of the image, (c)

quadtree representation of the blocks in (b).

Source: https://www.researchgate.net/figure/The-Quadtree-

decomposition-a-image-b-block-decomposition-of-the-image-and-

c_fig3_343874491

III. IMPLEMENTATION

A. Quadtree Decomposition Algorithm

The quadtree decomposition algorithm involves dividing an

image into smaller blocks based on the homogeneity of the

pixels within those blocks. Below are the general steps of the

quadtree decomposition algorithm:

1. Initialization

The digital image is inputted in a two-dimensional matrix

format for processing. At this stage, the homogeneity

criteria must also be defined, for example, based on the

variance of pixel intensity values within a block.

2. Recursive process

The decomposition process begins with the entire image

(the highest level) as the initial block. If the initial block

is homogeneous, it is not further subdivided. Conversely,

if the block is not homogeneous, it is divided into four

sub-blocks (quadrants). This process is repeated

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2019-2020/01-Pengantar-Pengolahan-Citra-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2019-2020/01-Pengantar-Pengolahan-Citra-Bag1.pdf
https://www.mathworks.com/help/images/quadtree-decomposition.html
https://www.mathworks.com/help/images/quadtree-decomposition.html
https://www.researchgate.net/figure/The-Quadtree-decomposition-a-image-b-block-decomposition-of-the-image-and-c_fig3_343874491
https://www.researchgate.net/figure/The-Quadtree-decomposition-a-image-b-block-decomposition-of-the-image-and-c_fig3_343874491
https://www.researchgate.net/figure/The-Quadtree-decomposition-a-image-b-block-decomposition-of-the-image-and-c_fig3_343874491

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2024/2025

recursively for each sub-block until all sub-blocks meet

the homogeneity criteria or the block size reaches a

predefined minimum limit.

3. Tree reconstruction

The decomposition result is stored in a quadtree

structure, where each node represents one block of the

image. Leaf nodes represent homogeneous blocks, while

internal nodes have four children representing the sub-

blocks.

4. Output

The algorithm produces a quadtree representation of the

image, which can be utilized for various purposes, such

as image compression and analysis.

B. Implementation and Testing of the Quadtree Decomposition

Algorithm in a Program

Below is the code representing the implementation of

quadtree decomposition:

In the code above, the image is first converted to grayscale

using the skimage library. The image needs to be converted to

grayscale because the is_homogeneous function utilizes

variance (np.var(block)) to evaluate the homogeneity of a block.

This variance is calculated based on pixel intensity, which is

only relevant for single-channel images such as grayscale. If a

color image (RGB) is used without conversion to grayscale,

np.var(block) will calculate the variance on a three-dimensional

array, which does not align with the expected homogeneity

criteria. Once the image is converted to grayscale, it is then

converted to an 8-bit data type to simplify decomposition.

Now that the image is converted, the decomposition process

is ready to proceed. The main function of this algorithm is

quadtree_decomposition, which works recursively to divide the

image into four parts if the block is not homogeneous. The

homogeneity of the block is checked using the is_homogeneous

function, which calculates the variance of pixels within a block

and compares it to a predefined threshold. If the variance is

below the threshold, the block is considered homogeneous and

is not further divided.

In the quadtree_decomposition function, the block division

works for both square and rectangular images. For square

images, the blocks are divided normally into four square sub-

blocks. For rectangular images, block sizes are dynamically

adjusted. Each time a block is divided, its dimensions are

calculated by halving the previous block's width and height.

Additionally, a boundary check ensures that the values of x +

half_width do not exceed the image width (image.shape[1]) and

y + half_height do not exceed the image height

(image.shape[0]). This ensures that the block division remains

within the image's dimensions.

After processing the entire image, the resulting divisions are

displayed using matplotlib, with each resulting block outlined in

red on the image. An example of the quadtree decomposition

result using this code is as follows:

Figure 13. Sample image

Source: https://x.com/azure_0608_sub

Algorithm execution

blocks = quadtree_decomposition(image, 0, 0,

image.shape[1],

 image.shape[0], threshold, min_size)

Result output

fig, ax = plt.subplots()

ax.imshow(image, cmap='gray')

for x, y, width, height in blocks:

 rect = plt.Rectangle((x, y), width, height,

 edgecolor='red', facecolor='none')

 ax.add_patch(rect)

plt.title('Quadtree Decomposition Result')

plt.show()

import numpy as np

from skimage import io, color

import matplotlib.pyplot as plt

import os

Homogenity checking

def is_homogeneous(block, threshold=10):

 return np.var(block) <= threshold

Decomposition recursion

def quadtree_decomposition(image, x, y, width, height,

threshold, min_size):

 if (width <= min_size or height <= min_size or

 is_homogeneous(image[y:y+height, x:x+width],

threshold)):

 return [(x, y, width, height)]

 half_width = width // 2

 half_height = height // 2

 blocks = []

 # Top left

 blocks += quadtree_decomposition(image, x, y, half_width,

 half_height, threshold, min_size)

 # Top right

 if x + half_width < image.shape[1]:

 blocks += quadtree_decomposition(image, x +

half_width,

 y, width - half_width,

 half_height, threshold,

min_size)

 # Bottom left

 if y + half_height < image.shape[0]:

 blocks += quadtree_decomposition(image, x, y +

half_height,

 half_width, height -

half_height,

 threshold, min_size)

 # Bottom right

 if x + half_width < image.shape[1] and y + half_height <

image.shape[0]:

 blocks += quadtree_decomposition(image, x +

half_width,

 y + half_height, width -

half_width,

 height - half_height,

 threshold, min_size)

 return blocks

Load grayscale image

image = io.imread(r"./test/sample.jpg", as_gray=True) * 255

image = image.astype(np.uint8)

Quadtree decomposition parameter

threshold = 20

min_size = 3

https://x.com/azure_0608_sub

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2024/2025

Figure 14. Quadtree decomposition result

using the given code

C. Testing Digital Image Processing with the Quadtree

Decomposition Technique

To prove that the quadtree decomposition technique can

enhance efficiency in digital image processing, testing is

required to compares the results of image processing using

quadtree decomposition with the results of processing without

using the quadtree decomposition. Below is the code used to

compare image compression processes with and without the

application of the quadtree decomposition technique using the

existing quadtree decomposition function:

The test results below indicate that image compression using

the quadtree decomposition algorithm produces smaller file

sizes, proving that this algorithm can improve the efficiency of

image compression and digital image processing in general.

Figure 16. Image compression results: the original image (left),

compression with quadtree decomposition (center), and compression

with simple downsampling (right).

Figure 17. Comparison of file sizes for image compression results

However, further testing reveals that quadtree decomposition

is less suitable for images with fine details that are evenly

distributed.

Compress image with quadtree decomposition

def compress_with_quadtree(image, blocks):

 compressed = np.zeros_like(image)

 for x, y, width, height in blocks:

 mean_value = np.mean(image[y:y+height, x:x+width])

 compressed[y:y+height, x:x+width] = mean_value

 return compressed

Compress image without quadtree decomposition (simple

downsampling)

def compress_without_quadtree(image, downscale_factor):

 small = cv2.resize(

 image,

 (

 image.shape[1] // downscale_factor,

 image.shape[0] // downscale_factor,

),

 interpolation=cv2.INTER_AREA

)

 return cv2.resize(small, (image.shape[1],

image.shape[0]),

 interpolation=cv2.INTER_AREA)

Calculate the effective compression ratio of quadtree

def calculate_quadtree_compression_ratio(image, blocks):

 total_blocks = sum([w * h for _, _, w, h in blocks])

 original_pixels = image.size

 return original_pixels / total_blocks

Load grayscale image

image = io.imread(r"./test/sample.jpg",

 as_gray=True) * 255

image = image.astype(np.uint8)

Quadtree decomposition parameters

threshold = 20

min_size = 3

Execute quadtree decomposition

blocks = quadtree_decomposition(image, 0, 0,

image.shape[1],

 image.shape[0], threshold, min_size)

compressed_quadtree = compress_with_quadtree(image, blocks)

Calculate the compression ratio of quadtree

compression_ratio_quadtree =

calculate_quadtree_compression_ratio(image,

 blocks)

Determine downscale factor for similar compression ratio

downscale_factor = int(np.sqrt(image.size / (image.size /

 compression_ratio_quadtree))

)

Execute compression without quadtree decomposition

compressed_no_quadtree = compress_without_quadtree(image,

downscale_factor)

Compute SSIM

ssim_quadtree = ssim(image, compressed_quadtree)

ssim_no_quadtree = ssim(image, compressed_no_quadtree)

Results output

fig, axes = plt.subplots(1, 3, figsize=(15, 5))

axes[0].imshow(image, cmap='gray')

axes[0].set_title('Original Image')

axes[0].axis('off')

axes[1].imshow(compressed_quadtree, cmap='gray')

axes[1].set_title(f'Compressed (Quadtree)\nSSIM:

{ssim_quadtree:.4f}')

axes[1].axis('off')

axes[2].imshow(compressed_no_quadtree, cmap='gray')

axes[2].set_title(f'Compressed (No Quadtree)\nSSIM:

{ssim_no_quadtree:.4f}')

axes[2].axis('off')

plt.tight_layout()

plt.show()

Save compressed images

io.imsave(r"./test/compressed_quadtree.jpg",

 img_as_ubyte(compressed_quadtree))

io.imsave(r"./test/compressed_no_quadtree.jpg",

 img_as_ubyte(compressed_no_quadtree))

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2024/2025

Figure 18. Comparison of file sizes for different sample image

IV. CONCLUSION

Based on the research conducted, it can be concluded that the

application of tree concepts in quadtree decomposition has

proven effective in improving efficiency in image processing.

The quadtree decomposition technique has been shown to

effectively simplify image representation, particularly for

images with large homogeneous areas. This technique can also

be adapted for various image analysis applications, such as

object segmentation and visual data indexing. However, the

algorithm is not suitable for processing images with evenly

distributed fine details, as it would complicate the image

processing algorithm.

V. SUGGESTION

The author's suggestion for future researchers who wish to

continue this topic is to explore the development of a hybrid

algorithm that combines quadtree decomposition with other

methods. Additionally, researchers are encouraged to test the

algorithm on larger and more diverse image datasets to evaluate

its scalability and generalizability across different applications.

Integrating the algorithm with modern technologies, such as

artificial intelligence, may also expand its potential for advanced

image processing tasks.

VI. APENDIX

The GitHub repository for this paper can be accessed at

https://github.com/JethroJNS/Matdis-Digital-Image-

Processing-with-Quadtree-Decomposition.git and the

explanatory video for this paper can be accessed at

https://youtu.be/a7cICCqme4Q

VII. ACKNOWLEDGMENT

The author expresses heartfelt gratitude to our Father in

Heaven, whose boundless grace, wisdom, and strength made

the completion of this academic research possible. It was

through His divine guidance and provision that every step of

this work was successfully accomplished. Deep appreciation is

also extended to the esteemed lecturer, Dr. Ir. Rinaldi Munir,

M.T., whose invaluable guidance, encouragement, and support

greatly enhanced the quality of this research. The author

further thanks their family for their unwavering love, prayers,

and faith, which provided strength and encouragement

throughout the making of this paper. Lastly, sincere gratitude

goes to friends, whose fellowship and support enriched this

meaningful experience.

REFERENCES

[1] Munir, Rinaldi. 2024. “Graf (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf (accessed on 25th December 2024)

[2] Munir, Rinaldi. 2024. “Pohon (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-

Pohon-Bag1-2024.pdf (accessed on 25th December 2024)

[3] Munir, Rinaldi. 2024. “Pohon (Bagian 2)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-

Pohon-Bag2-2024.pdf (accessed on 25th December 2024)

[4] Munir, Rinaldi. 2019. “Pengantar Pengolahan Citra (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2019-2020/01-

Pengantar-Pengolahan-Citra-Bag1.pdf (accessed on 25th December

2024)
[5] Strobach, Peter “Quadtree-Structured Recursive Plane Decomposition

Coding of Images” IEEE Transactions on Image Processing 39, no. 6

(July 1991): 1380 – 1397. Available:
https://www.researchgate.net/publication/3314487_Quadtree-

Structured_Recursive_Plane_Decomposition_Coding_of_Images

(accessed on 25th December 2024)
[6] Shusterman, E., and M. Feder. "Image compression via improved quadtree

decomposition algorithms." IEEE Transactions on Image Processing 3,

no. 2 (March 1994): 207–215. Available:
https://ieeexplore.ieee.org/abstract/document/277901 (accessed on 25th

December 2024)

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not an adaptation or translation of someone else's paper,

and not a product of plagiarism.

Bandung, 26th December 2024

Jethro Jens Norbert Simatupang

13523081

https://github.com/JethroJNS/Matdis-Digital-Image-Processing-with-Quadtree-Decomposition.git
https://github.com/JethroJNS/Matdis-Digital-Image-Processing-with-Quadtree-Decomposition.git
https://youtu.be/a7cICCqme4Q

